PySpark Best Practices for Fabric | CONFIDENTIAL

PYSPARK
BEST PRACTICES FOR FABRIC

DataFrame Optimization • Joins • Caching • Performance Tuning

Version 1.0 | January 2026

Table of Contents

1. Spark in Fabric Overview
Microsoft Fabric provides managed Apache Spark for data engineering workloads. Understanding Spark fundamentals and Fabric-specific optimizations enables efficient and cost-effective data processing.
1.1 Fabric Spark Architecture
1. Managed Spark clusters provisioned on-demand
1. Starter pools for instant notebook execution
1. Custom pools for dedicated capacity
1. Auto-scaling based on workload
1. Integration with OneLake for data access
1.2 DataFrame API vs. SQL
Prefer DataFrame API for programmatic transformations:
	Aspect
	DataFrame API
	Spark SQL

	Optimization
	Same Catalyst optimizer
	Same Catalyst optimizer

	Type Safety
	Compile-time checking
	Runtime errors

	IDE Support
	Full autocomplete
	String-based

	Complex Logic
	Easier to modularize
	Large SQL strings

	Best For
	ETL pipelines, ML
	Ad-hoc analysis

1.3 Lazy Evaluation
Spark uses lazy evaluation—transformations are not executed until an action is called.
1. Transformations (select, filter, join): Define computation, return new DataFrame
1. Actions (count, collect, write): Trigger execution, return results
1. Benefit: Optimizer can combine operations for efficiency
Tip: Use .explain() to see the execution plan before running expensive operations.

2. DataFrame Operations
Master essential DataFrame operations for efficient data processing.
2.1 Reading Data
From Lakehouse Tables
Read Delta table
df = spark.read.table('lakehouse_name.table_name')

Read with path
df = spark.read.format('delta').load('Tables/my_table')
From Files
CSV
df = spark.read.csv('Files/data.csv', header=True, inferSchema=True)

Parquet
df = spark.read.parquet('Files/data.parquet')

JSON
df = spark.read.json('Files/data.json')
2.2 Selecting Columns
from pyspark.sql.functions import col, lit

Select specific columns
df.select('col1', 'col2', 'col3')

Select with column objects
df.select(col('col1'), col('col2').alias('renamed'))

Add computed column
df.withColumn('new_col', col('amount') * 1.1)
2.3 Filtering
Simple filter
df.filter(col('status') == 'ACTIVE')

Multiple conditions
df.filter((col('status') == 'ACTIVE') & (col('amount') > 1000))

Using where (alias for filter)
df.where(col('date') >= '2024-01-01')

IN clause
df.filter(col('state').isin(['CA', 'NY', 'TX']))
2.4 Aggregations
from pyspark.sql.functions import sum, count, avg, max, min

Group by with aggregation
df.groupBy('category').agg(
 sum('amount').alias('total_amount'),
 count('*').alias('record_count'),
 avg('amount').alias('avg_amount')
)
2.5 Writing Data
Write to Delta table
df.write.format('delta').mode('overwrite').save('Tables/output')

Append to existing table
df.write.format('delta').mode('append').saveAsTable('my_table')

Write with partitioning
df.write.format('delta').partitionBy('year', 'month').save('Tables/partitioned')

3. Join Optimization
Joins are often the most expensive operations in Spark. Proper join strategy selection significantly impacts performance.
3.1 Join Types
	Join Type
	Description
	When to Use

	inner
	Only matching rows from both tables
	Most common, default

	left
	All from left, matching from right
	Keep all source records

	right
	All from right, matching from left
	Rarely used

	outer
	All rows from both tables
	Full reconciliation

	left_semi
	Left rows that have match in right
	Existence check

	left_anti
	Left rows without match in right
	Find missing records

3.2 Broadcast Joins
When one table is small (<10MB), broadcast it to all nodes to avoid shuffle:
from pyspark.sql.functions import broadcast

Explicit broadcast hint
result = large_df.join(broadcast(small_df), 'key')

Configure auto-broadcast threshold (bytes)
spark.conf.set('spark.sql.autoBroadcastJoinThreshold', 10485760) # 10MB
When to Use Broadcast
1. Dimension table joins (small lookup tables)
1. Reference data joins
1. Tables under 10MB (configurable)
1. Avoid for tables that might grow large
3.3 Sort-Merge Joins
Default for large table joins. Both tables sorted by join key then merged.
1. Best for large-to-large table joins
1. Requires shuffle (expensive)
1. Benefits from pre-sorted/partitioned data
3.4 Join Best Practices
1. Filter before joining to reduce data shuffled
1. Select only needed columns before join
1. Use broadcast for small dimension tables
1. Ensure join keys have same data type
1. Handle null keys explicitly
1. Avoid Cartesian joins (cross joins without condition)
Good: Filter and select before join
orders_filtered = orders.filter(col('status') == 'COMPLETED')
 .select('order_id', 'customer_id', 'amount')

result = orders_filtered.join(broadcast(customers), 'customer_id')
Warning: Joining on columns with many nulls can cause skew. Filter nulls or handle explicitly.

4. Caching and Persistence
Caching stores DataFrame in memory/disk for reuse, avoiding recomputation. Use strategically—improper caching wastes resources.
4.1 When to Cache
1. DataFrame used multiple times in same notebook
1. After expensive computation (complex joins, aggregations)
1. Iterative algorithms (ML training)
1. Interactive exploration of same dataset
4.2 When NOT to Cache
1. DataFrame used only once
1. Data fits computation in single pass
1. Limited memory available
1. Data changes between uses
4.3 Caching Methods
cache() - stores in memory (MEMORY_AND_DISK if memory full)
df_cached = df.cache()

persist() - specify storage level
from pyspark import StorageLevel
df.persist(StorageLevel.MEMORY_AND_DISK)
df.persist(StorageLevel.DISK_ONLY)

Trigger caching with action
df_cached.count() # Actually caches the data

Unpersist when done
df_cached.unpersist()
4.4 Storage Levels
	Storage Level
	Description

	MEMORY_ONLY
	Memory only, recompute if evicted

	MEMORY_AND_DISK
	Memory with disk spillover (default for cache())

	DISK_ONLY
	Disk only, use for large datasets

	MEMORY_ONLY_SER
	Serialized in memory, less memory but CPU cost

4.5 Caching Pattern
Good pattern: Cache after expensive operation, use multiple times
base_df = spark.read.table('large_table')

transformed = (base_df
 .filter(col('date') >= '2024-01-01')
 .join(broadcast(dim_table), 'key')
 .groupBy('category').agg(sum('amount').alias('total'))
)

Cache because we'll use it multiple times
transformed_cached = transformed.cache()
transformed_cached.count() # Trigger cache

Multiple uses
summary1 = transformed_cached.filter(col('category') == 'A')
summary2 = transformed_cached.filter(col('category') == 'B')

Clean up
transformed_cached.unpersist()

5. Performance Tuning
Optimize Spark jobs through configuration, partitioning, and code patterns.
5.1 Shuffle Optimization
Shuffles redistribute data across nodes and are expensive. Minimize shuffles where possible.
Shuffle Partitions
Default is 200, often suboptimal
spark.conf.set('spark.sql.shuffle.partitions', 'auto') # AQE auto-tuning

Or set manually based on data size
spark.conf.set('spark.sql.shuffle.partitions', 100)
Reduce Shuffle Data
1. Filter early to reduce data before shuffle
1. Select only needed columns
1. Use broadcast joins for small tables
1. Pre-partition data by join keys
5.2 Adaptive Query Execution (AQE)
AQE optimizes queries at runtime based on actual data statistics:
Enable AQE (default in Fabric)
spark.conf.set('spark.sql.adaptive.enabled', True)

AQE features
spark.conf.set('spark.sql.adaptive.coalescePartitions.enabled', True)
spark.conf.set('spark.sql.adaptive.skewJoin.enabled', True)
spark.conf.set('spark.sql.adaptive.localShuffleReader.enabled', True)
AQE Benefits
1. Auto-coalesce small partitions
1. Handle data skew automatically
1. Convert sort-merge to broadcast joins when beneficial
1. Optimize shuffle partitions at runtime
5.3 Predicate Pushdown
Push filters to data source to minimize data read:
Good: Filter pushed to Delta
df = spark.read.table('large_table').filter(col('date') == '2024-01-01')

Verify pushdown in plan
df.explain(True) # Look for PushedFilters
5.4 Column Pruning
Select only needed columns to reduce I/O:
Good: Read only needed columns
df = spark.read.table('wide_table').select('col1', 'col2', 'col3')

Bad: Read all columns then select
df = spark.read.table('wide_table') # Reads all columns
5.5 Partition Pruning
Ensure queries can prune partitions:
Good: Direct partition filter
df.filter(col('report_date') == '2024-01-01')

Bad: Function on partition column prevents pruning
df.filter(year(col('report_date')) == 2024) # No pruning

6. Common Patterns
6.1 Deduplication
from pyspark.sql.window import Window
from pyspark.sql.functions import row_number, desc

Keep most recent record per business key
window = Window.partitionBy('business_key').orderBy(desc('modified_date'))

deduped = (df
 .withColumn('row_num', row_number().over(window))
 .filter(col('row_num') == 1)
 .drop('row_num')
)
6.2 SCD Type 2
Using Delta MERGE for SCD Type 2
from delta.tables import DeltaTable

target = DeltaTable.forPath(spark, 'Tables/dim_customer')

Close existing records
target.alias('t').merge(
 source.alias('s'),
 't.customer_id = s.customer_id AND t.is_current = true'
).whenMatchedUpdate(
 condition='t.hash_value != s.hash_value',
 set={'is_current': 'false', 'end_date': 'current_date()'}
).whenNotMatchedInsert(
 values={...}
).execute()
6.3 Incremental Load
Get high watermark
max_date = spark.read.table('silver_table')
 .select(max('modified_date')).collect()[0][0]

Read incremental from bronze
incremental = spark.read.table('bronze_table')
 .filter(col('modified_date') > max_date)

Merge into silver
... MERGE logic
6.4 Error Handling
from pyspark.sql.functions import when, col

Handle nulls
df.withColumn('amount', when(col('amount').isNull(), 0).otherwise(col('amount')))

Coalesce
df.withColumn('name', coalesce(col('preferred_name'), col('legal_name')))

Try-except for operations
try:
 df.write.mode('overwrite').save(path)
except Exception as e:
 print(f'Write failed: {e}')

7. Best Practices Summary
7.1 Code Organization
1. Use functions to modularize transformations
1. Keep notebooks focused on single pipeline stage
1. Store reusable code in library notebooks
1. Use meaningful variable names
1. Add comments for complex logic
7.2 Performance
1. Filter and select early to reduce data volume
1. Use broadcast joins for small tables
1. Enable and leverage AQE
1. Cache DataFrames used multiple times
1. Avoid UDFs when built-in functions exist
1. Monitor with Spark UI for bottlenecks
7.3 Data Quality
1. Validate data before writing
1. Handle nulls explicitly
1. Log row counts at key stages
1. Implement assertions for expected data
1. Test transformations with sample data
7.4 Anti-Patterns to Avoid
1. Collecting large DataFrames to driver (.collect())
1. Using Python UDFs for simple operations
1. Caching everything (wastes memory)
1. Ignoring partition pruning
1. Joining without considering broadcast
1. Skipping explain() for complex queries

Appendix: Quick Reference
A.1 Common Imports
from pyspark.sql import SparkSession
from pyspark.sql.functions import (
 col, lit, when, coalesce, concat,
 sum, count, avg, max, min,
 year, month, day, date_format,
 row_number, rank, dense_rank,
 broadcast, explode, array
)
from pyspark.sql.window import Window
from pyspark.sql.types import *
from delta.tables import DeltaTable
A.2 Document Information
	Document Title
	PySpark Best Practices for Fabric

	Version
	1.0

	Last Updated
	January 2026

Page of
